Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Rep ; 42(5): 112503, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: covidwho-2311643

RESUMO

Striking antibody evasion by emerging circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants drives the identification of broadly neutralizing antibodies (bNAbs). However, how a bNAb acquires increased neutralization breadth during antibody evolution is still elusive. Here, we identify a clonally related antibody family from a convalescent individual. One of the members, XG005, exhibits potent and broad neutralizing activities against SARS-CoV-2 variants, while the other members show significant reductions in neutralization breadth and potency, especially against the Omicron sublineages. Structural analysis visualizing the XG005-Omicron spike binding interface reveals how crucial somatic mutations endow XG005 with greater neutralization potency and breadth. A single administration of XG005 with extended half-life, reduced antibody-dependent enhancement (ADE) effect, and increased antibody product quality exhibits a high therapeutic efficacy in BA.2- and BA.5-challenged mice. Our results provide a natural example to show the importance of somatic hypermutation during antibody evolution for SARS-CoV-2 neutralization breadth and potency.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Anticorpos , Anticorpos Amplamente Neutralizantes , Mutação/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
PLoS One ; 18(3): e0281603, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2287054

RESUMO

This research aims to explore the multi-focus group method as an effective tool for systematically eliciting business requirements for business information system (BIS) projects. During the COVID-19 crisis, many businesses plan to transform their businesses into digital businesses. Business managers face a critical challenge: they do not know much about detailed system requirements and what they want for digital transformation requirements. Among many approaches used for understanding business requirements, the focus group method has been used to help elicit BIS needs over the past 30 years. However, most focus group studies about research practices mainly focus on a particular disciplinary field, such as social, biomedical, and health research. Limited research reported using the multi-focus group method to elicit business system requirements. There is a need to fill this research gap. A case study is conducted to verify that the multi-focus group method might effectively explore detailed system requirements to cover the Case Study business's needs from transforming the existing systems into a visual warning system. The research outcomes verify that the multi-focus group method might effectively explore the detailed system requirements to cover the business's needs. This research identifies that the multi-focus group method is especially suitable for investigating less well-studied, no previous evidence, or unstudied research topics. As a result, an innovative visual warning system was successfully deployed based on the multi-focus studies for user acceptance testing in the Case Study mine in Feb 2022. The main contribution is that this research verifies the multi-focus group method might be an effective tool for systematically eliciting business requirements. Another contribution is to develop a flowchart for adding to Systems Analysis & Design course in information system education, which may guide BIS students step by step on using the multi-focus group method to explore business system requirements in practice.


Assuntos
COVID-19 , Humanos , Grupos Focais , Comércio , Estudantes
3.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2286212

RESUMO

Face masks can effectively prevent the spread of viruses. It is necessary to determine the wearing condition of masks in various locations, such as traffic stations, hospitals, and other places with a risk of infection. Therefore, achieving fast and accurate identification in different application scenarios is an urgent problem to be solved. Contactless mask recognition can avoid the waste of human resources and the risk of exposure. We propose a novel method for face mask recognition, which is demonstrated using the spatial and frequency features from the 3D information. A ToF camera with a simple system and robust data are used to capture the depth images. The facial contour of the depth image is extracted accurately by the designed method, which can reduce the dimension of the depth data to improve the recognition speed. Additionally, the classification process is further divided into two parts. The wearing condition of the mask is first identified by features extracted from the facial contour. The types of masks are then classified by new features extracted from the spatial and frequency curves. With appropriate thresholds and a voting method, the total recall accuracy of the proposed algorithm can achieve 96.21%. Especially, the recall accuracy for images without mask can reach 99.21%.


Assuntos
Percepção de Forma , Máscaras , Humanos , SARS-CoV-2 , Algoritmos , Reconhecimento Psicológico
4.
Front Nutr ; 10: 1104446, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2286195

RESUMO

Cordycepin, an important active substance in Cordyceps militaris, possesses antiviral and other beneficial activities. In addition, it has been reported to effectively promote the comprehensive treatment of COVID-19 and thus has become a research hotspot. The addition of naphthalene acetic acid (NAA) is known to significantly improve the yield of cordycepin; however, its related molecular mechanism remains unclear. We conducted a preliminary study on C. militaris with different concentrations of NAA. We found that treatment with different concentrations of NAA inhibited the growth of C. militaris, and an increase in its concentration significantly improved the cordycepin content. In addition, we conducted a transcriptome and metabolomics association analysis on C. militaris treated with NAA to understand the relevant metabolic pathway of cordycepin synthesis under NAA treatment and elucidate the relevant regulatory network of cordycepin synthesis. Weighted gene co-expression network analysis (WGCNA), transcriptome, and metabolome association analysis revealed that genes and metabolites encoding cordycepin synthesis in the purine metabolic pathway varied significantly with the concentration of NAA. Finally, we proposed a metabolic pathway by analyzing the relationship between gene-gene and gene-metabolite regulatory networks, including the interaction of cordycepin synthesis key genes; key metabolites; purine metabolism; TCA cycle; pentose phosphate pathway; alanine, aspartate, and glutamate metabolism; and histidine metabolism. In addition, we found the ABC transporter pathway to be significantly enriched. The ABC transporters are known to transport numerous amino acids, such as L-glutamate, and participate in the amino acid metabolism that affects the synthesis of cordycepin. Altogether, multiple channels work together to double the cordycepin yield, thereby providing an important reference for the molecular network relationship between the transcription and metabolism of cordycepin synthesis.

5.
J Med Virol ; 95(2): e28440, 2023 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2268814

RESUMO

Emergence of various circulating SARS-CoV-2 variants of concern (VOCs) promotes the identification of pan-sarbecovirus vaccines and broadly neutralizing antibodies (bNAbs). Here, to characterize monoclonal antibodies cross-reactive against both SARS-CoV-1 and SARS-CoV-2 and to search the criterion for bNAbs against all emerging SARS-CoV-2, we isolated several SARS-CoV-1-cross-reactive monoclonal antibodies (mAbs) from a wildtype SARS-CoV-2 convalescent donor. These antibodies showed broad binding capacity and cross-neutralizing potency against various SARS-CoV-2 VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but failed to efficiently neutralize Omicron variant and its sublineages. Structural analysis revealed how Omicron sublineages, but not other VOCs, efficiently evade an antibody family cross-reactive against SARS-CoV-1 through their escape mutations. Further evaluation of a series of SARS-CoV-1/2-cross-reactive bNAbs showed a negative correlation between the neutralizing activities against SARS-CoV-1 and SARS-CoV-2 Omicron variant. Together, these results suggest the necessity of using cross-neutralization against SARS-CoV-1 and SARS-CoV-2 Omicron as criteria for rational design and development of potent pan-sarbecovirus vaccines and bNAbs.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Monoclonais , Anticorpos Amplamente Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
6.
EURASIP J Adv Signal Process ; 2023(1): 18, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2246203

RESUMO

A large number of epidemics, including COVID-19 and SARS, quickly swept the world and claimed the precious lives of large numbers of people. Due to the concealment and rapid spread of the virus, it is difficult to track down individuals with mild or asymptomatic symptoms with limited human resources. Building a low-cost and real-time epidemic early warning system to identify individuals who have been in contact with infected individuals and determine whether they need to be quarantined is an effective means to mitigate the spread of the epidemic. In this paper, we propose a smartphone-based zero-effort epidemic warning method for mitigating epidemic propagation. Firstly, we recognize epidemic-related voice activity relevant to epidemics spread by hierarchical attention mechanism and temporal convolutional network. Subsequently, we estimate the social distance between users through sensors built-in smartphone. Furthermore, we combine Wi-Fi network logs and social distance to comprehensively judge whether there is spatiotemporal contact between users and determine the duration of contact. Finally, we estimate infection risk based on epidemic-related vocal activity, social distance, and contact time. We conduct a large number of well-designed experiments in typical scenarios to fully verify the proposed method. The proposed method does not rely on any additional infrastructure and historical training data, which is conducive to integration with epidemic prevention and control systems and large-scale applications.

7.
ACS Sens ; 7(11): 3422-3429, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: covidwho-2096637

RESUMO

A new coronavirus, SARS-CoV-2, has caused the coronavirus disease-2019 (COVID-19) epidemic. A rapid and economical method for preliminary screening of COVID-19 may help to control the COVID-19 pandemic. Here, we report a nickel single-atom electrocatalyst that can be printed on a paper-printing sensor for preliminary screening of COVID-19 suspects by efficient detection of fractional exhaled nitric oxide (FeNO). The FeNO value is confirmed to be related to COVID-19 in our exploratory clinical study, and a machine learning model that can accurately classify healthy subjects and COVID-19 patients is established based on FeNO and other features. The nickel single-atom electrocatalyst consists of a single nickel atom with N2O2 coordination embedded in porous acetylene black (named Ni-N2O2/AB). A paper-printed sensor was fabricated with the material and showed ultrasensitive response to NO in the range of 0.3-180 ppb. This ultrasensitive sensor could be applied to preliminary screening of COVID-19 in everyday life.


Assuntos
Testes Respiratórios , COVID-19 , Humanos , COVID-19/diagnóstico , Níquel , Óxido Nítrico , Pandemias , SARS-CoV-2
8.
Cell Discov ; 8(1): 104, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2062195

RESUMO

The highly mutated and transmissible Omicron (BA.1) and its more contagious lineage BA.2 have provoked serious concerns over their decreased sensitivity to the current COVID-19 vaccines and evasion from most anti-SARS-CoV-2 neutralizing antibodies (NAbs). In this study, we explored the possibility of combating the Omicron and BA.2 by constructing bispecific antibodies based on non-Omicron NAbs. We engineered 10 IgG-like bispecific antibodies with non-Omicron NAbs named GW01, 16L9, 4L12, and REGN10987 by fusing the single-chain variable fragments (scFvs) of two antibodies through a linker and then connecting them to the Fc region of IgG1. Surprisingly, 8 out of 10 bispecific antibodies showed high binding affinities to the Omicron receptor-binding domain (RBD) and exhibited extreme breadth and potency against pseudotyped SARS-CoV-2 variants of concern (VOCs) including Omicron and BA.2, with geometric mean of 50% inhibitory concentration (GM IC50) values ranging from 4.5 ng/mL to 103.94 ng/mL, as well as the authentic BA.1.1. Six bispecific antibodies containing the cross-NAb GW01 not only neutralized Omicron and BA.2, but also neutralized the sarbecoviruses including SARS-CoV and SARS-related coronaviruses (SARSr-CoVs) RS3367 and WIV1, with GM IC50 ranging from 11.6 ng/mL to 103.9 ng/mL. Mapping analyses of 42 spike (S) variant single mutants of Omicron and BA.2 elucidated that these bispecific antibodies accommodated the S371L/F mutations, which were resistant to most of the non-Omicron NAbs. A cryo-electron microscopy (cryo-EM) structure study of the representative bispecific antibody GW01-16L9 (FD01) in its native full-length IgG form in complex with the Omicron S trimer revealed 5 distinct trimers and one novel trimer dimer conformation. 16L9 scFv binds the receptor-binding motif (RBM), while GW01 scFv binds a epitope outside the RBM. Two scFvs of the bispecific antibody synergistically induced the RBD-down conformation into 3 RBD-up conformation, improved the affinity between IgG and the Omicron RBD, induced the formation of trimer dimer, and inhibited RBD binding to ACE2. The trimer dimer conformation might induce the aggregation of virions and contribute to the neutralization ability of FD01. These novel bispecific antibodies are strong candidates for the treatment and prevention of infection with the Omicron, BA.2, VOCs, and other sarbecoviruses. Engineering bispecific antibodies based on non-Omicron NAbs could turn the majority of NAbs into a powerful arsenal to aid the battle against the pandemic.

9.
J Am Coll Health ; : 1-9, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1978104

RESUMO

Objective: This study examines Chinese international students' underlying beliefs and overall perception of the flu vaccination to inform effective health promotion efforts on U.S. college campuses. Participants: Data were collected in March 2020. Participants (N = 189) were recruited via email at a southeastern university in the U.S. Methods: Incorporating theory recommendations and recent vaccine-related research findings, this study designs a Four-Factor Measurement Model through confirmatory factor analysis (CFA) to examine Chinese international students' perception of flu vaccination. Results: Chinese international students' health beliefs, particularly their perceived susceptibility of the influenza virus, was the most important factor to explain their perception of flu vaccination. While normative beliefs were the least influential factor to account for Chinese international students' perception of flu vaccination, these students valued healthcare providers' opinions immensely. Conclusions: This study suggests the Four-Factor Measurement Model will help measure Chinese international students' perception of flu vaccination and can be applied to future vaccine-related research.

10.
J Virol ; 96(16): e0048022, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1973787

RESUMO

The continuous emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses new challenges in the fight against the coronavirus disease 2019 (COVID-19) pandemic. The newly emerging Omicron strain caused serious immune escape and raised unprecedented concern all over the world. The development of an antibody targeting a conserved and universal epitope is urgently needed. A subset of neutralizing antibodies (NAbs) against COVID-19 from convalescent patients were isolated in our previous study. In this study, we investigated the accommodation of these NAbs to SARS-CoV-2 variants of concern (VOCs), revealing that IgG 553-49 neutralizes pseudovirus of the SARS-CoV-2 Omicron variant. In addition, we determined the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 spike (S) protein complexed with three monoclonal antibodies targeting different epitopes, including 553-49, 553-15, and 553-60. Notably, 553-49 targets a novel conserved epitope and neutralizes the virus by disassembling S trimers. IgG 553-15, an antibody that neutralizes all of the VOCs except Omicron, cross-links two S trimers to form a trimer dimer, demonstrating that 553-15 neutralizes the virus by steric hindrance and virion aggregation. These findings suggest the potential to develop 553-49 and other antibodies targeting this highly conserved epitope as promising therapeutic reagents for COVID-19. IMPORTANCE The emergence of the Omicron strain of SARS-CoV-2 caused higher immune escape, raising unprecedented concerns about the effectiveness of antibody therapies and vaccines. In this study, we identified a SARS-CoV-2 neutralizing antibody, 553-49, which neutralizes all variants by targeting a completely conserved novel epitope. In addition, we revealed that IgG 553-15 neutralizes SARS-CoV-2 by cross-linking virions and that 553-60 functions by blocking receptor binding. Comparison of different receptor binding domain (RBD) epitopes revealed that the 553-49 epitope is hidden in the S trimer and keeps a high degree of conservation during SARS-CoV-2 evolution, making 553-49 a promising therapeutic reagent against the emerging Omicron and future variants of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Epitopos , Humanos , Imunoglobulina G , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
11.
Front Immunol ; 13: 898520, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1911047

RESUMO

Despite the fact that SARS-CoV-2 vaccines have been available in most parts of the world, the epidemic status remains grim with new variants emerging and escaping the immune protection of existing vaccines. Therefore, the development of more effective antigens and evaluation of their cross-protective immunity against different SARS-CoV-2 variants are particularly urgent. In this study, we expressed the wild type (WT), Alpha, Beta, Delta, and Lambda RBD proteins to immunize mice and evaluated their cross-neutralizing activity against different pseudoviruses (WT, Alpha, Beta, Delta, Lambda, and Omicron). All monovalent and pentavalent RBD antigens induced high titers of IgG antibodies against different variant RBD antigens. In contrast, WT RBD antigen-induced antibodies showed a lower neutralizing activity against Beta, Delta, Lambda, and Omicron pseudoviruses compared to neutralization against itself. Interestingly, Beta RBD antigen and multivalent antigen induced broader cross-neutralization antibodies than other variant RBD antigens. These data provide a reference for vaccine strain selection and universal COVID-19 vaccine design to fight the constant emergence of new SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Camundongos
13.
J Food Biochem ; 46(9): e14219, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1840460

RESUMO

The current COVID-19 pandemic is severely threatening public healthcare systems around the globe. Some supporting therapies such as remdesivir, favipiravir, and ivermectin are still under the process of a clinical trial, it is thus urgent to find alternative treatment and prevention options for SARS-CoV-2. In this regard, although many natural products have been tested and/or suggested for the treatment and prophylaxis of COVID-19, carotenoids as an important class of natural products were underexplored. The dietary supplementation of some carotenoids was already suggested to be potentially effective in the treatment of COVID-19 due to their strong antioxidant properties. In this study, we performed an in silico screening of common food-derived carotenoids against druggable target proteins of SARS-CoV-2 including main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase. Molecular docking results revealed that some of the carotenoids had low binding energies toward multiple receptors. Particularly, crocin had the strongest binding affinity (-10.5 kcal/mol) toward the replication complex of SARS-CoV-2 and indeed possessed quite low binding energy scores for other targets as well. The stability of crocin in the corresponding receptors was confirmed by molecular dynamics simulations. Our study, therefore, suggests that carotenoids, especially crocin, can be considered an effective alternative therapeutics and a dietary supplement candidate for the prophylaxis and treatment of SARS-CoV-2. PRACTICAL APPLICATIONS: In this study, food-derived carotenoids as dietary supplements have the potential to be used for the prophylaxis and/or treatment of SARS-CoV-2. Using in silico techniques, we aimed at discovering food-derived carotenoids with inhibitory effects against multiple druggable sites of SARS-CoV-2. Molecular docking experiments against main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase resulted in a few carotenoids with multitarget inhibitory effects. Particularly, crocin as one of the main components of saffron exhibited strong binding affinities to the multiple drug targets including main protease, helicase, replication complex, mutant spike protein of lineage B.1.351, and ADP-ribose phosphatase. The stability of the crocin complexed with these drug targets was further confirmed through molecular dynamics simulations. Overall, our study provides the preliminary data for the potential use of food-derived carotenoids, particularly crocin, as dietary supplements in the prevention and treatment of COVID-19.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Adenosina Difosfato Ribose , Produtos Biológicos/farmacologia , Carotenoides/farmacologia , Suplementos Nutricionais , Humanos , Simulação de Acoplamento Molecular , Pandemias , Peptídeo Hidrolases/química , Monoéster Fosfórico Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
14.
Cell ; 185(8): 1389-1401.e18, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: covidwho-1788017

RESUMO

The effectiveness of SARS-CoV-2 vaccines and therapeutic antibodies have been limited by the continuous emergence of viral variants and by the restricted diffusion of antibodies from circulation into the sites of respiratory virus infection. Here, we report the identification of two highly conserved regions on the Omicron variant receptor-binding domain recognized by broadly neutralizing antibodies. Furthermore, we generated a bispecific single-domain antibody that was able to simultaneously and synergistically bind these two regions on a single Omicron variant receptor-binding domain as revealed by cryo-EM structures. We demonstrated that this bispecific antibody can be effectively delivered to lung via inhalation administration and exhibits exquisite neutralization breadth and therapeutic efficacy in mouse models of SARS-CoV-2 infections. Importantly, this study also deciphered an uncommon and highly conserved cryptic epitope within the spike trimeric interface that may have implications for the design of broadly protective SARS-CoV-2 vaccines and therapeutics.


Assuntos
Vacinas contra COVID-19 , Anticorpos de Domínio Único , Administração por Inalação , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Vacinas contra COVID-19/administração & dosagem , Modelos Animais de Doenças , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
15.
Small ; 17(52):2170274, 2021.
Artigo em Inglês | Wiley | ID: covidwho-1588875

RESUMO

COVID-19 Diagnostics In article number 2104009, Jiang Xu, Yan Zhang, Taotao Lao, and co-workers present a handheld microfluidic filtration platform that enables rapid, low-cost and robust self-testing of the SARS-CoV-2 virus. The cover design emphasizes its important advantages: (1) Equipment-free handheld injection, represented by the hands manipulation;(2) Visible and easy readout: a Taichi diagram is used to distinguish the negative/positive results, which is in line with the meaning of Taichi (Yin/Yang) in traditional Chinese culture. The Taichi eyes are filled with illustrational structures of negative/positive nanocomplexes;(3) Reusable chips: the flow arrows at both inlet and outlet indicate that the chip can be repeatedly cleaned and injected.

16.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1545905

RESUMO

Spatial transcriptomics has been emerging as a powerful technique for resolving gene expression profiles while retaining tissue spatial information. These spatially resolved transcriptomics make it feasible to examine the complex multicellular systems of different microenvironments. To answer scientific questions with spatial transcriptomics and expand our understanding of how cell types and states are regulated by microenvironment, the first step is to identify cell clusters by integrating the available spatial information. Here, we introduce SC-MEB, an empirical Bayes approach for spatial clustering analysis using a hidden Markov random field. We have also derived an efficient expectation-maximization algorithm based on an iterative conditional mode for SC-MEB. In contrast to BayesSpace, a recently developed method, SC-MEB is not only computationally efficient and scalable to large sample sizes but is also capable of choosing the smoothness parameter and the number of clusters. We performed comprehensive simulation studies to demonstrate the superiority of SC-MEB over some existing methods. We applied SC-MEB to analyze the spatial transcriptome of human dorsolateral prefrontal cortex tissues and mouse hypothalamic preoptic region. Our analysis results showed that SC-MEB can achieve a similar or better clustering performance to BayesSpace, which uses the true number of clusters and a fixed smoothness parameter. Moreover, SC-MEB is scalable to large 'sample sizes'. We then employed SC-MEB to analyze a colon dataset from a patient with colorectal cancer (CRC) and COVID-19, and further performed differential expression analysis to identify signature genes related to the clustering results. The heatmap of identified signature genes showed that the clusters identified using SC-MEB were more separable than those obtained with BayesSpace. Using pathway analysis, we identified three immune-related clusters, and in a further comparison, found the mean expression of COVID-19 signature genes was greater in immune than non-immune regions of colon tissue. SC-MEB provides a valuable computational tool for investigating the structural organizations of tissues from spatial transcriptomic data.


Assuntos
Algoritmos , COVID-19/metabolismo , Simulação por Computador , Perfilação da Expressão Gênica , SARS-CoV-2/metabolismo , Animais , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Córtex Pré-Frontal Dorsolateral/metabolismo , Humanos , Hipotálamo/metabolismo , Cadeias de Markov , Camundongos
17.
Small ; 17(52): e2104009, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1540180

RESUMO

Here, a novel microfluidic test kit combining ultrahigh throughput hydrodynamic filtration and sandwich immunoassay is reported. Specifically, nano and microbeads coated with two different, noncompetitive antibodies, are used to capture the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) proteins simultaneously, forming larger complexes. Microfluidic filtration discards free nanobeads but retains antigen-bridged complexes in the observation zone, where a display of red color indicates the presence of antigen in the sample. This testing platform exhibits high throughput separation (<30 s) and enrichment of antigen that exceeds the traditional lateral flow assays or microfluidic assays, with a low limit of detection (LoD) < 100 copies mL-1 . In two rounds of clinical trials conducted in December 2020 and August 2021, the assays demonstrate high sensitivities of 95.4% and 100%, respectively, which proves this microfluidic test kit is capable of detecting SARS-CoV-2 virus variants evolved over significant periods of time. Furthermore, the mass-produced chip can be fabricated at a cost of $0.98/test and the robust design allows the chip to be reused for over 50 times. All of these features make the microfluidic test kit particularly suitable for areas with inadequate medical infrastructure and a shortage of laboratory resources.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunoensaio , Microfluídica , Autoteste , Sensibilidade e Especificidade
18.
Bioanalysis ; 13(23): 1731-1741, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1518698

RESUMO

In response to the outbreak of COVID-19, in accordance with the principles of 'unified command, early involvement, prompt review and scientific approval' as well as the requirements of ensuring product safety, effectiveness and controllable quality, the Center for Medical Device Evaluation (CMDE) has issued Key Points of Technical Review for the Registration of SARS-CoV-2 Nucleic Acid Tests (Key Points) to provide the requirements of tests. Because of the sustainability of the pandemic, more efforts and attempts are needed for SARS-CoV-2 detection and control. This article interprets the Key Points issued by the CMDE and provides certain refinements to wider audiences.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , China , Humanos , SARS-CoV-2
19.
Cell Res ; 32(1): 9-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1505077

RESUMO

In contrast to the extensive research about viral protein-host protein interactions that has revealed major insights about how RNA viruses engage with host cells during infection, few studies have examined interactions between host factors and viral RNAs (vRNAs). Here, we profiled vRNA-host protein interactomes for three RNA virus pathogens (SARS-CoV-2, Zika, and Ebola viruses) using ChIRP-MS. Comparative interactome analyses discovered both common and virus-specific host responses and vRNA-associated proteins that variously promote or restrict viral infection. In particular, SARS-CoV-2 binds and hijacks the host factor IGF2BP1 to stabilize vRNA and augment viral translation. Our interactome-informed drug repurposing efforts identified several FDA-approved drugs (e.g., Cepharanthine) as broad-spectrum antivirals in cells and hACE2 transgenic mice. A co-treatment comprising Cepharanthine and Trifluoperazine was highly potent against the newly emerged SARS-CoV-2 B.1.351 variant. Thus, our study illustrates the scientific and medical discovery utility of adopting a comparative vRNA-host protein interactome perspective.


Assuntos
COVID-19 , Vírus de RNA , Infecção por Zika virus , Zika virus , Animais , Antivirais , Humanos , Camundongos , RNA Viral , SARS-CoV-2 , Proteínas Virais
20.
Signal Transduct Target Ther ; 6(1): 378, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1500450

RESUMO

The current COVID-19 pandemic has heavily burdened the global public health system and may keep simmering for years. The frequent emergence of immune escape variants have spurred the search for prophylactic vaccines and therapeutic antibodies that confer broad protection against SARS-CoV-2 variants. Here we show that the bivalency of an affinity maturated fully human single-domain antibody (n3113.1-Fc) exhibits exquisite neutralizing potency against SARS-CoV-2 pseudovirus, and confers effective prophylactic and therapeutic protection against authentic SARS-CoV-2 in the host cell receptor angiotensin-converting enzyme 2 (ACE2) humanized mice. The crystal structure of n3113 in complex with the receptor-binding domain (RBD) of SARS-CoV-2, combined with the cryo-EM structures of n3113 and spike ecto-domain, reveals that n3113 binds to the side surface of up-state RBD with no competition with ACE2. The binding of n3113 to this novel epitope stabilizes spike in up-state conformations but inhibits SARS-CoV-2 S mediated membrane fusion, expanding our recognition of neutralization by antibodies against SARS-CoV-2. Binding assay and pseudovirus neutralization assay show no evasion of recently prevalent SARS-CoV-2 lineages, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) for n3113.1-Fc with Y58L mutation, demonstrating the potential of n3113.1-Fc (Y58L) as a promising candidate for clinical development to treat COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , COVID-19 , SARS-CoV-2/química , Anticorpos de Cadeia Única/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Humanos , Camundongos , SARS-CoV-2/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA